skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghosh, Chandrani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of low-valent iron complexes that feature a phosphine-substituted α-diimine (DI) ligand have been synthesized. Reduction of (Ph2PPrDI)FeBr2 with an excess of Na/Hg in the presence of carbon monoxide afforded the corresponding dicarbonyl complex, (Ph2PPrDI)Fe(CO)2. Through multinuclear NMR and single crystal X-ray diffraction analysis, this complex was found to possess a 3-coordinate DI ligand. Upon heating for 10 days at 110 °C while applying intermittent vacuum, (Ph2PPrDI)Fe(CO)2 was successfully converted to the corresponding monocarbonyl complex, (Ph2PPrDI)Fe(CO), which was found to feature a tetradentate chelate. Similar reactivity was explored using the analogous bis(tert-butyl)phosphine-substituted ligand, tBu2PPrDI. Addition of this chelate to FeBr2 afforded (tBu2PPrDI)FeBr2, and subsequent reduction yielded (tBu2PPrDI)FeBr, which was found to possess a tridentate DI ligand by single crystal X-ray diffraction. Performing the reduction of (tBu2PPrDI)FeBr2 in the presence of CO afforded the corresponding dicarbonyl complex, (tBu2PPrDI)Fe(CO)2. Like aryl-substituted (Ph2PPrDI)Fe(CO)2, alkyl-substituted (tBu2PPrDI)Fe(CO)2 was found to feature a pendant phosphine arm. However, heating (tBu2PPrDI)Fe(CO)2 under vacuum did not allow for phosphine substitution and conversion to the corresponding monocarbonyl complex, highlighting the importance of phosphine π-acidity for substitution and the stabilization of low-valent iron. 
    more » « less