- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ghosh, Chandrani (3)
-
Flores, Marco (2)
-
Groy, Thomas L. (2)
-
Trovitch, Ryan J. (2)
-
Baik, Mu-Hyun (1)
-
Ben-Daat, Hagit (1)
-
Groy, Thomas L (1)
-
Kim, Jun-Hyeong (1)
-
Mena, Matthew R. (1)
-
Mukhopadhyay, Tufan K. (1)
-
Porter, Tyler M. (1)
-
Sharma, Anuja (1)
-
Slater, Gavin C (1)
-
So, Sangho (1)
-
Trovitch, Ryan J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A series of low-valent iron complexes that feature a phosphine-substituted α-diimine (DI) ligand have been synthesized. Reduction of (Ph2PPrDI)FeBr2 with an excess of Na/Hg in the presence of carbon monoxide afforded the corresponding dicarbonyl complex, (Ph2PPrDI)Fe(CO)2. Through multinuclear NMR and single crystal X-ray diffraction analysis, this complex was found to possess a 3-coordinate DI ligand. Upon heating for 10 days at 110 °C while applying intermittent vacuum, (Ph2PPrDI)Fe(CO)2 was successfully converted to the corresponding monocarbonyl complex, (Ph2PPrDI)Fe(CO), which was found to feature a tetradentate chelate. Similar reactivity was explored using the analogous bis(tert-butyl)phosphine-substituted ligand, tBu2PPrDI. Addition of this chelate to FeBr2 afforded (tBu2PPrDI)FeBr2, and subsequent reduction yielded (tBu2PPrDI)FeBr, which was found to possess a tridentate DI ligand by single crystal X-ray diffraction. Performing the reduction of (tBu2PPrDI)FeBr2 in the presence of CO afforded the corresponding dicarbonyl complex, (tBu2PPrDI)Fe(CO)2. Like aryl-substituted (Ph2PPrDI)Fe(CO)2, alkyl-substituted (tBu2PPrDI)Fe(CO)2 was found to feature a pendant phosphine arm. However, heating (tBu2PPrDI)Fe(CO)2 under vacuum did not allow for phosphine substitution and conversion to the corresponding monocarbonyl complex, highlighting the importance of phosphine π-acidity for substitution and the stabilization of low-valent iron.more » « less
-
Mena, Matthew R.; Kim, Jun-Hyeong; So, Sangho; Ben-Daat, Hagit; Porter, Tyler M.; Ghosh, Chandrani; Sharma, Anuja; Flores, Marco; Groy, Thomas L.; Baik, Mu-Hyun; et al (, Inorganic Chemistry)
-
Mukhopadhyay, Tufan K.; Ghosh, Chandrani; Flores, Marco; Groy, Thomas L.; Trovitch, Ryan J. (, Organometallics)
An official website of the United States government
